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The nature of the dependence of phase on the choice of origin is clarified for those centrosymmetric 
space groups, for which the conventional unit  cell is not primitive, by means of special linear com- 
binations of the phases, the structure seminvariants. The theory leads to simple procedures for 
selecting the origin by first fixing the functional form for the structure factor and then specifying 
arbitrarily the values of a suitable set of phases. 

1. Introduction 

The development  of formulas for the  de te rmina t ion  
of the  values of phases direct ly from observed inten- 

sities makes necessary a s tudy of the relat ionship of 
phase to the  specification of origin. This problem has 
a l ready been t rea ted  for those centrosymmetr ic  and 

Table 1. Coord ina t e s  f o r  centered c e n t r o s y m m e t r i c  space  g r o u p s  re ferred to a p r i m i t i v e  u n i t  cell 

Space group Coordinates (+ and -) 

C2/m x, y, z y, x, z 

C2/c x, y, z y, x, z + ½ 

Cmcm x, y, z y, x, z + ½ y, x, .2 x, y, ~ + ½ 

Cmca x, y, z y, x, z + ~  y+½,  x+½, .2 x+½, y+½, .2+~. 

Cmmm x, y, z y, x, z y, x, ~ x, y, 

Cccm x, y, z y, x, z + ½ y, x, .2+½ x, y, 

Cmma x, y, z y, x, z y+½, x+½, ~ x+½, y+½, .2 

Ccca x, y, z y, x, z+½ y+½, x+½, ~+½ x+½, y+{., 

F m m m  x, y, z x + y + z, z, y .2, x + y + z, ~ y, x, x + y + z 

Fddd 

Fro3 

Fd3 

lXm3m 

Fm3c 

.Fd3m 

Fd3c 

x, y, z x + y + z + ~ . ,  z, y .2, x-~-y+z+½, ~ y, x, x+y -~ - z+  ½ 

x , y , z  x + y + z , z , y  .2, x + y + z , ~  y , x , x + y + z  
z , x , y  x + y + z , y , x  y , x + y + z ,  5 x , z , x + y + z  
y , z , x  x + y + z , x , z  ~ , x + y + z , y  z , y , x + y + z  

x, y, z x + y W z + ½ ,  z, y .2, x + y - t - z + ½ ,  • y, x, x + y + z + ½  
z, x, y x + y + z + ½ ,  y, x ~, x + y + z + ½ , - 2  x, z, x + y + z + ½  
y, z, x x+y+z-÷-~-, x, z 2, x + y + z + ½ ,  y z, y, x + y + z + ½  

coordinates of Fro3 + 
x, z, y x + y + z ,  y, z y, x + y + z ,  ~ z, x, x + y +  z 
y, x, z x + y + z ,  z, x .2, x + y + z ,  ~ x, y, x + y + z  
z, y, x x + y + z ,  x, y ~, x + y + z ,  ~ y, z, x + y +  z 

coordinatesofFm3 
x+½, z+½, y+½ 
y+½, x+½, z+½ 
z+½, y+½, x+½ 

+ 
x + y + z + ½ , ~ + ½ , . 2 + ½  
x + y + z + ½ , . 2 + ½ , ~ + ½  
x + y + z + ½ , ~ + ½ ,  Y+½ 

y+½,  x + y + z + ½ ,  "~+½ 
.2+½, x + y + z + ½ ,  Y +  ½ 
• +½, x + y + z + ½ ,  .2+½ 

.2+½,~+½, x + y + z + ½  
~ + t , y + ½ ,  x + y + z + ½  
y+½,.2+½, x + y + z + ½  

coordinates of _Fd3 + 
x, z, y x + y + z + ½ ,  y, z y, x + y + z + ½ ,  ~ z, x, x ÷ y + z + ~  
y, x, z x + y + z +  ½, z, x .2, x + y + z +  ½, y x, y, x + y + z + ½  
z, y, x x + y + z + ½ ,  x, y ~, x + y + z + ½ ,  .2 y, z, x + y + z + ½  

coordinatesofFd3+ 
x+½, z+½, Y+½ x + y + z , y + ½ , . 2 + ½  
y+½, x+½, z+½ x + y + z , . 2 + ½ , ~ + ½  
z+½, Y+½, x+½ x + y + z ~ + ½ , ~ + ½  

~+½, x + y + z ,  ~+½ 
~+½, x + y + z , y + ½  
~-~-½, x + y + z , ~ + ½  

~+½,~+½,  x + y + z  
~+½, Y÷½,  x + y + z  
qj+½,~+½, x + y + z  
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Table 1 (cont.) 

Space group Coordinates (+ and -) 

I m m m  x, y, z x, T-t-z, ~,-~y y ~ z ,  ~, x ~ y  y~-5, x ~ ,  z 

Ibam x, y, z ~.-~½, ~+z+½, ~ + y  y--~z+½, ~+½, x + ~  y+~, x+~, z 

Ibca x, y, z ~ + ½, ~-t- z + ½, ~-~ y y + z, ~-~ ½, x + ~-t- ½ y-~ ~--~ ½, x + ~, ~-t- ½ 

I m m a  x, y, z x, ~ + z ,  "~ + y  y+z--~½, y, x + Y + ½  y-I-5-]-½, x+~ ,  -5+½ 

I 4 / m  x, y, z x +~, x, x + y  y, y +  F,, "~+y ~ + z ,  ~,+ z, z 

I41/a x, y, z x+'5, x, x + y + ½  y, y + ~ + ½ ,  5 + y  y+z+½, ~+z, z+½ 

I 4 / m m m  x, y, z x + ~, x, x + ~j y, y + ~, ~ + y ~ + z, ~ + z, z 
y, x, z x, x+~, x + y  y+~, y, 5+y  ~+z, y+z,  z 

I4[mcm x, y, z x+~ ,  x, x + ~  y, y+~ ,  ~ + y  ~ + z ,  "~+z, z 
y+½,  x+½,  z x+½,  x + ~ + ½ ,  x + ~  y + ~ + ~ ,  y+½,  ~,+y ~ + z + ½ ,  y + z + ½ ,  z 

f41/amd x, y, z x- -~ ,  x, x+y--k½ y, y+-~+½, ~-~y y -~z+½,  ~ + z ,  z+½ 
y, x, z+½ x, x+~ ,  x + y  y + ~ + ½ ,  y, ~ + y + ½  ~ + z ,  y + z + ½ ,  z 

I41/acd x, y, z x + 5 ,  x, x W y +  ½ y, y + ~ +  ½, ~ + y  y + z +  ½, ~ + z ,  z +  ½ 
y+½,  x+½,  z+½ x+½,  x + ~ + ½ ,  x + y  y+~,  y+½,  ~ + y + ~  ~ + z + ½ ,  y + z ,  z 

I m 3  x, y, z x, x + ~, x + y y + ~, y, ,~ + y y + z, "~ + z, z 
z, x, y z, y + z ,  ~--kz x + ~ ,  x, x-~-~ ~ + y ,  y--~--2, y 
y, z, x y, ~ + y, y-t-'2 ~ + z, z, ~--~ z x-l--5, x--~-~, x 

Ia3 x, y,  z x--~ ½, x + S  + ½, x + ~  Y + ~, Y-k ½, x,+Y-'~ ½ ~ + z--k ½, ~ + z ,  z-b ½ 
z, x, y Y'-k ~, ~ +z-~- ½, ~ zF z x - -~ ,  x +  ½, x-b~ + ½ ~-t-Y + ½, Y + ~, Y +  ½ 
y, z, x z +  ½, ~ + y +  ½, y +  ~ ~ + z ,  z +  ½, ~ + z +  ½ x + ~ +  ½, x + ~ ,  x +  ½ 

I m 3 m  coordinates of I m 3  --b 
x, z, y x, x+~, x+~ ~-~-z, z, ~+z y~-~, ~-~y, y 
z, y, x z, ~+z, ~+z ~+y,  y, y+~ x+~, x+~, x 
y, x, z y, y+~, ~+y x+~, x, x + y  ~+z, ~+z, z 

Ia3d coordinates of Ia3 + 
x+½,  z+½, Y+½ x , x + ~ + ½ ,  x + ~  ~ ] + z , z , ~ + z + ½  y + - 2 + ½ , 2 + y , y  
z+½, Y+½, x+½ z , 2 + z + ½ ,  y + z  - 2 + y , y , y + ~ + ½  x + y + ½ ,  x + ~ , x  
y+½,  x+½,  z+½ y, y + ~ + ½ ,  ~,+y x+~,  x, x + y + ½  ~ + z + ½ ,  y + z ,  z 

non-cent rosymmetr ic  space groups for which the  con- 
vent ional  uni t  cell is pr imit ive ( H a u p t m a n  & Karle,  
1953, 1956). I t  was seen there t h a t  certain linear 
combinations of the  phases, called the  s t ructure  
seminvariants ,  p layed a central  role. The seminvar iants  
show which phases are uniquely determined by  the 
intensities alone and  which are to be specified in 
order to fix the  origin. 

In  this paper  we are concerned with those centre- 
symmetr ic  space groups for which the  conventional 
uni t  cell is non-primitive.  The t r ea tmen t  here involves 
the  use of well-known t ransformat ions  to replace the  
conventional centered cell by  an appropr ia te  primit ive 
uni t  cell. The methods referred to above are then 
immedia te ly  applicable. I f  desired, the  final results 
m a y  be readily expressed in terms of the  conventional 
cell by  means of appropr ia te  t ransformations.  

2. Primitive unit cells 
The coordinates representing the space group relat ive 
to a pr imit ive unit  cell are obtained from those cor- 
responding to a non-primit ive uni t  cell ( I n t e r n a t i o n a l  
Tab les ,  1952) by  means of the  following matr ices:  

and 

1 1 O )  
C - + P ,  1 - 1  0 , (2-1) 

0 0 - 1  

0 1 1 )  
I --> P ,  1 0 1 , (2-2) 

1 1 0 

/ -1  1 i) 
F - > P ,  (_ 1 - 1  1 . (2-3) 

\ 1 1 - 1  

The results are shown in Table 1. For  some of the  
space groups the  origin has been shifted to exhibit  
the relationship between group and subgroup. 

3. Equivalence 
For  the centrosymmetr ic  space groups, the  permissible 
origins are the  eight centers of s y m m e t r y  in the  
primit ive unit  cell. However,  not  all of these need be 
equivalent,  since different centers of s y m m e t r y  m a y  
be s i tuated differently with respect to the  s y m m e t r y  
elements. The non-equivalent  origins are associated 
with different functional forms for the  s t ruc ture  
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Table 2. Equivalence classes, seminvariant  vectors and seminvariant  moduli  for  the centered 
centrosymmetric space groups, referred to a primit ive uni t  cell 
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Category 2 3 4 

No. of equivalence classes 2 4 8 

Type 2P 2_P 1 3P9. 3P a 4_P 

Space groups 

Equivalence classes of origins 

Seminvariant vector, hs, 
referred to primitive cell 

Seminvariant modulus, cos 

No. of phases linearly 
semi-independent to be 
specified arbitrarily 

C2/m 
C2/c 
Cmcm 
Cmca 
G~?~qTbm 
Cccm 
Cmma 
Ccca 

O, O, 0 
I 

o,o,½ I 

½,½,0 1 I 
½,½,½ i i 

½, O, 0 

½,0,½ 

0, ½, 0 

0,½,½ 

(h+~, z) 

(2, 2) 

I~lzonm 
Ibam 
Ibca 
Imma 

O, O, 0 

½, ½, 0 

½,0,½ 

0,½,½ 

½, O, 0 

O, ½, 0 

O, O, ½ 

½,½,½ 

(h+k, k+l,  l+h) 

(2, 2, 2) 

.Fmmm 
_Vddd 
JFm3 
~'d3 
J~m3m 
_~m3c 
Fd3m 
lgd3c 

0, 0, 0 
½,½,½ 

½, 0, 0 
0,½,½ 

0, L0  

½,0,½ 

0,0, ½ 
½,½,0 

(h+k+Z) 

(2) 

I4/m 
I41/a 
I4/mmm 
I4/mcm 
I 41/ amd 
I41/acd 

0, 0, 0 

½,½,0 

½, O, 0 

0, ½, 0 

o,o, ½ I 
I 
i 

½,½,½ I i 
i 

½,0,½ 

0,½,½ 
i 

(h+k) 

(2) 

Im3 
Ia3 
Im3m 
Ia3d 

0 ,0 ,0  [ 

[ ½,0,0 ] 

i 0, ,0 I 
I 0,0, 1 

(h, k, Z) 

(], 1, ]) 

factors.  This leads logically to the  concept of equiv- 
alence. Two origins are said to be equivalent  if t hey  
are geometrical ly related in the  same way  to all the  
s y m m e t r y  elements or, a l ternat ively,  if t hey  lead to 
the same functional  form for the  s t ruc ture  factor.  I n  
this way  the  set of eight permissible origins is divided 
into one or more equivalence classes; two origins in 
the  same class being equivalent,  while no two origins 
t aken  from different classes are equivalent.  According 
as the  number  of equivalence classes is one, two, four  
or eight, the corresponding space group is said to be 
in category one, two, three or four. The various 
categories m a y  be fur ther  subdivided as to type  de- 
pending upon the  na tu re  of the  equivalenceS:classes 
(Table 2). 

4 Y S e m i n v a r i a n c e  

Once a funct ional  form for the  s t ruc ture  factor  has 
been chosen, i.e. a par t icular  equivalence class has 
been selected, then  the values of certain linear com- 
binations of the phases are determined by  the  crystal  
s t ructure ,  or, for centrosymmetr ic  s tructures,  by  the  

observed intensities ( independently of the  choice of 
origin within the  par t icular  equivalence class). These 
linear combinations of the  phases are called the  struc- 
ture  seminvar iants  ( H a u p t m a n  & Karle,  1953, 1956). 
The aims of this paper  are a t ta ined  with the  identifica- 
t ion of the s t ruc ture  seminvar iants  for each space 
group. To this end it is convenient to define the  semin- 
va r i an t  vector  and  seminvar ian t  modulus associated 
with the  vector  h = (h, k, 1), as indicated in rows 6 
and 7 of Table 2; and to develop the concept of linear 
dependence and independence. 

5. L i n e a r  d e p e n d e n c e  a n d  i n d e p e n d e n c e  

5.1. Vectors 

In  order to develop the  concepts of linear dependence 
and  independence we proceed as previously,  (Haupt-  
m a n  & Karle,  1956), and consider vectors h = 
(h 1, h 2, . . . ,  hp) and oz = (coj, cog., . . . ,  cop), where the  
h~'s and co~'s are integers. In  this paper  the co~'s are 
restr icted to the values 1 and 2. The vector  h is said 
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to be divisible by  the vector co if each hi is devisible 
by  o9,. In  this  case we write 

h ~ 0 (mod co). (5.1.1) 

Two vectors h 1 and h~. are congruent modulo co if the 
difference h ~ - h  2 is divisible by  co; and the notat ion 

h 1 = h 2 (mod co) (5"1"2) 
is used. 

A set of n vectors h:, j = 1, 2 . . . .  , n, (n _> 1), is said 
to be l inearly dependent  modulo co if there exists a 
set of n integers a~,j = 1, 2, . . . ,  n, at  least one of 
which is odd such tha t  

n 

AL" a :h :  - 0 (rood co) . (5.1.3) 

If  each wi is equal to 2, this definit ion is included in 
the one previously given (1956). If  each o9t is equal 
to 1, this  definit ion supplements  the previous one 
(1956) which is no longer applicable. We note tha t  if 
each w, is equal to unity,  then  every set of vectors 
is l inearly dependent  modulo co. If  the set h: is not 
l inear ly  dependent  modulo co, i t  is said to be l inearly 
independent  modulo co. 

The vector h is l inearly dependent  modulo co on, 
or l inear ly  independent  modulo co of, the set 
hj, j = l ,  2 , . . . ,  n(n  > 1), according as there exist 
or do not  exist n integers a~,j  = 1, 2, . . . ,  n, some or 
all of which m a y  be zero, such tha t  

~b 

h -- ~v a :h:  (mod co) . (5.1.4) 
j--1 

If every w, is equal to unity, then ~ny vector is 
evident ly  l inearly dependent  modulo co on any  set of 
vectors. If  every w, is equal to two, then any  vector h, 
each of whose components is even, is l inearly de- 
pendent  modulo co on any  set of vectors since each 
a~ in (5.1-4) m a y  be chosen to be zero. 

5-2. Phases 

The seminvar ian t  vector h~ and the seminvar iant  
modulus cos associated with the vector h ~-: (h, k,/) ,  
or, a l ternat ively,  with the phase qh, have already 
been defined (Table 2). We use these to define the 
concept of l inear semi-dependence and semi-inde- 
pendence of phases. 

For each of the types described in Table 2, a set of 
phases 9h, is said to be linearly semi-dependent or 
semi-indeI)endent according as the set of semin- 
var ian t ly  associated vectors is l inearly dependent  or 
independent  modulo cos, where cos is the seminvar iant  
modulus of the type. 

The phase ~h is l inearly semi-dependent on, or 
l inearly semi-independent  of, the set of phases ~h/ 
according as the vector seminvar ian t ly  associated with 
~h is l inearly dependent  modulo cos on, or l inearly 
independent  modulo cos of, the set of vectors semin- 
var ian t ly  associated with the set q~hT.. 

As already noted, for each fixed funct ional  form of 
a structure factor, the observed intensit ies determine 
the values of all s tructure seminvariants .  The ident i ty  
of the seminvar iants  is given by the following- 

Theorem 1. For each type, the structure semin- 
var iants  are the l inear combinat ions 

..~5" Ah0% , (5"2"1) 
h 

where the Ah are integers satisfying 

Z Ahhs ~ 0 (rood cos) , (5.2.2) 
h 

hs is the vector seminvar ian t ly  associated with the 
phase 9h, CO, is the seminvar ian t  modulus of the type, 

and the symbol  2," in (5.2.1) means  tha t  the sum in 

(5.2.1) is to be reduced modulo 27~ and - ~  < 2," < ~. 
h 

The proof of this theorem, based upon an analysis  
of the equivalence classes shown in Table 2, follows 
the same lines as tha t  given in Monograph I (1953). 

6.  S p e c i f i c a t i o n  o f  o r i g i n  

In  the determinat ion of phase by some direct proce- 
dure, it  is presumed, of course, tha t  a sufficiently 
large number  of intensities have been observed to 
determine the structure uniquely.  I t  is also necessary 
to choose one of the possible functional  forms of the 
structure factor, e.g. by means of the coordinates listed 
in Table 1. This corresponds to selecting one of the 
possible equivalence classes listed in Table 2. Only 
when this is done will the values of the seminvar iants  
be uniquely determined by the observed intensities. 
I t  is therefore to be expected tha t  fixing the funct ional  
form of the structure factor is an integral par t  of any  
direct procedure for determining the values of phases 
from measured intensities. 

6.1. Type  2 P  

The phases which are the structure seminvariants ,  
hence uniquely  determined by the magni tudes  of the 
structure factors alone, independent  of the choice of 
origin, are of the form qgggg and Cfuuz (g means even and 
u means  odd). The value of any  phase, qg~, not of this  
form, m a y  be specified arbi trar i ly,  i.e. either 0 or ~. 
Once this is done, the values of all phases, l inear ly  
semi-dependent  on q01, are uniquely  determined.  The 
value of any phase, ~2, linearly semi.independent of 
qh m a y  be specified arbitrari ly.  In  this way the origin 
is fixed and the value of any  remaining phase ~ is 
determined. This is a consequence of Theorem 1, 
since q~ is l inearly senti-dependent on the pair ~1 and ~2, 
whence there exist integers A 1 and A 2 such tha t  

q~+ Alq~l + A2~ 2 (6.1-1) 

is a structure seminvar iant  and therefore de termined 
by the intensities. 

As an i l lustrat ion of the specification of origin, 
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~ may be chosen to be a ~ag. Then the values of all 
phases ~ugg and ~gua, being linearly semi-dependent 
on ~ ,  are determined. Next, F~ may be chosen to be 
a q~uu. Then the values of all phases q~uu and ~ u ,  
linearly semi-dependent on ~ ,  are determined. Finally 
the values of all phases q~ugu and q~guu, linearly semi- 
dependent on the pair qh, ~2, are determined. 

6.2. Type 2P 1 

The first paragraph of 6.1 carries over verbatim for 
Type 2P~ with the single exception that  the semin- 
variant phases are now of the form ~ggg and q~uuu. 

As an illustration of the specification of origin, 
~1 may be chosen to be a ~u~g. The values of all phases 
q~uug and ~ea~, linearly semi-dependent on ~ ,  are 
determined. Next, ~ may be chosen to be a ~a~. 
Then the values of all phases q~guu and ~ugg, linearly 
semi-dependent on ~2, are determined. Finally the 
values of all phases q)ugu and ~g~a, linearly semi- 
dependent on the pair ~ ,  ~ ,  are determined. 

6.3. Type 3P 2 
The phases which are the structure seminvariants 

are of the form ~ggg, T~ug, ~ug~ and q~guu. The value of 
any phase ~ ,  not of this form, may be specified 
arbitrarily. Once this is done, the values of all phases, 
of necessity linearly semi-dependent on ~1, are deter- 
mined. For example, T1 may be chosen to be ~ggu. 

6.4. Type 3P3 
The phases which are the structure seminvariants 

are of the form q~ggg, q~ggu, q)uug, and q)uuu. The value 
of any phase ~1, not of this form, may be specified 
arbitrarily. Once this is done, the values of all phases, 

of necessity linearly semi-dependent on qh, are deter- 
mined. For example, ~1 may be chosen to be ~uga. 

6.5. Type 4P 
Every phase is a structure seminvariant and its 

value is determined by the observed intensities. The 
value of no phase may be specified arbitrarily. In this 
type, the choice of the functional form of the structure 
factor is equivalent to the unique selection of the 
origin. 

7. Concluding remarks  

Monograph I (1953) and this paper present a detailed 
procedure for specifying the origin in any centro- 
symmetric space group. This has been done by 
demonstrating the existence of relationships between 
the observed intensities and values of the phases via 
the structure seminvariants. With the specific state- 
ment of the nature of these relationships, it is possible 
to go directly from observed intensities to the values 
of phases. I t  will be the aim of future publications to 
employ the formulas of our two recent papers (1958) 
to obtain specific procedures for phase determination 
for all the space groups. 
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Structure Factor Calculations for some  Helical  Polypept ide  Models  

BY DAwD 1%. DAw~s ~ D  ALEX~'~D~R 1%~Cg 

Section on Physical Chemistry, National Institute of Mental Health, Bethesda, Maryland, U . S . A .  

(Received 16 September 1957) 

Structure factors have been calculated for some helical polypeptide models, assuming random 
angular orientations of the molecules about the helical axis. The computations were carried out 
on IBM punched-card machines and a brief description is given of the method of computation. 

Introduction 

The theory of X-ray diffraction by helical molecules 
has been developed by Cochran, Crick & Vand (1952), 
who applied it to verify the presence of the s-helix 
(Pauling, Corey & Branson, 1951) in the synthetic 
polypeptide, poly-y-methyl-L- glutamate. Since then, 
helical structures have been proposed for a number of 

ACI2 

molecules, e.g. desoxyribose nucleic acid (Watson & 
Crick, 1953); collagen (Rich & Crick, 1955). Although 
many helical structures have been proposed with no 
more than a qualitative prediction of the calculated 
intensities, it is important to point out that  a structure 
with satisfactory screw dimensions will not neces- 
sarily result in a correct distribution of layer-line 


