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Seminvariants for Centrosymmetric Space Groups
with Conventional Centered Cells

By H. HaupTmMaN AND J. KARLE
U.S. Naval Research Laboratory, Washington 25, D.C., U.S. 4.

(Received 8 August 1958)

The nature of the dependence of phase on the choice of origin is clarified for those centrosymmetric
space groups, for which the conventional unit cell is not primitive, by means of special linear com-
binations of the phases, the structure seminvariants. The theory leads to simple procedures for
selecting the origin by first fixing the functional form for the structure factor and then specifying
arbitrarily the values of a suitable set of phases.

1. Introduction sities makes necessary a study of the relationship of

phase to the specification of origin. This problem has
already been treated for those centrosymmetric and

The development of formulas for the determination
of the values of phases directly from observed inten-

Table 1. Coordinates for centered centrosymmetric space groups referred to a primitive unit cell

Space group Coordinates (* and —)
C2/m z, Y, 2 Y, T, 2
C2/c z,Y, 2 Y, @, 244
Cmem z,Y,2 Yy, x, 2+ % Y, z,Z Z, yvi+%
Cmeca Z, Y, 2 Ys T, 2+ % ?/+1}, z+4,2 z+ 4, y+4,z2+3%
Cmmm z, Y,z Y, Xy 2 Y, Ty & z, Y, %
Cccm x, Y, 2 Y, x!z'l'% Y, x,é-i—% z, y,f .
Cmma z, 9,2 Y, T, 2 y+4x+4,2 z+4,y+3,2
Ceca z, Y, 2 Y, %, 2+ 4 y+i,o+3,2+3 z+4y+i, 2
Fmmm Y, 2 z+y+22,% Z,xty+z,% 9, %, x+y+z
Fddd z, Y, 2 z+y+z+4,%7 Z,xty+z+3,7 9, %, v+y+z+i
Fm3 Z, Y, 2 z2+y+z,27 zZ, 2+y+z,7% Y, & x+y+z
z, %,y z+y+z,9, T Y, x+y+z,z T,z x+y+z
Y, %, x z+y+z,7,2 Z,x+y+zYy Ly, xtytz
Fd3 z, Y, 2 zty+z+4,%2,7 Z,2+y+z+4,% Y Ty xt+y+e+i
2,2,y z+y+z+4,%,% Y, x+y+z+3,2 Z,z,x+y+z+i
Yy 2, T z+y+z+4,7%,2 T, x+y+z+3,9 %,y c+y+z+1
Fm3m coordinates of Fm3 4
z, 2, Y z+y+z9,2 Ysx+ytz 2, %, x+y+tz
Y, %, 2 z+y+z,2,% 2, 2+y+2,y z, Y xt+y+z
2,Y, z+y+27,y Z,x+y+z,2 Y.z, xtytz
Fm3c coordinates of Fm3 -+
z+3,2+3, y+13 z+y+z+4,y+4,z24+4 Y+ etytz+4,7+3% z2+3, 2+, 2+y+z+4
y+ix+3,24+3 z+y+z+4,2+4,7+% z+4, 2+y+z+4, 943 Z+4, Y+, z+y+z+3
2+, y+3,2+3 z+y+z+4,72+4,9+3 T+t z+y+z+4,24+3 g+i, 2+, 2+y+z+3
Fd3m coordinates of Fd3 -
z,2,Yy z+y+2z+4%,9,2 Y x+y+tz+i, T Z,Z,z+y+z+14
Y, T, 2 z+y+z2+3,2,7 Z,zty+z+4,9 zZ, Yy, x+y+z+3
2,9, z+y+z+4,%,9 Z,z+y+z2+4,2 Y.z, z+y+z2+13
Fd3c coordinates of Fd3 -+
z+i,2+4,y+3 zt+y+z,y+3z2+1% y+iztytz 43 Z+4,Z+ %, vty+z
Y+, z+4,243 z+y+z,z2+3,T+3 Z+ 4, 2+y+2, 7+ % Z+4, 9+, v+y+2
z+3,y+3,2+3 z+y+zZ+4,5+% T+t z+y+z,2+3% Y+4,z4+3, zt+y+z
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Table 1 (cont.)

SEMINVARIANTS FOR CENTROSYMMETRIC SPACE GROUPS

Space group Coordinates (* and —)
Immm z, Y, 2 Z, Z+2, Tty y+z,9, z2+y y+z,242,2
Ibam z,Y,2 z+4, 2+z+4, T4y Y+z+4, y+4, 2+y Y+z,2+%,2
Ibca z,Y, 2 z4+4,7+2+4, Tty y+2, §+%, 2+y+1 y+z+3,2+2,2+1
Imma z,Y, 2 Z, T+z, T4y y+z+3, G, 2+y+% y+2+ 4, 2+2,24+ %
I4/m z,Y,2 z+zZ, 2, 24y Y, y+2,z7+y Y+2z,Z+2,2
I4,/a z,Y,2 z+z, 2z, z+y+ % Y yt+z+4, T4y Y+z+4, Ttz 243
I4|/mmm x,Y, 2 42z, 2, 2+Y Y, Y+2,z+y Y+2z2,Z+z2,2
Y, X, 2 z, x+2, 2+Y y+2,9,T+y T4z, Y+2,2
I4[mem z, 9,2 z+2, x, x+Y Y Y+% Z2+y Y+2z,T+2,2
Y+ e+ 2 -+, x+z+4, ¢ +y y+z+i,y+5, 24y T+z+4,y+z+4,2
I41/amd x, '.ll.z a:-{-E, x’ x+y+é y’ y+2+‘é’ E"l‘y .’—'j+2+£’ E"‘Z’ Z+é
Y, @, 2+ % z, T2, +Y y+z+4 ¥, 2+y+3 T+z,Y+2+4,2
141/a0d z, y,z x+2’ x, -’70+§+i‘ y; y+§+%9 E+y y+z+§’ E'|‘z: Z-{-%
y+izt+3,2+13 z+4,2+2+4, 24y Y+E y+4,T+y+3 T+z+4,5+2,2
Im3 z, Y, 2 Z, x+2y -’E'i‘y y+27 Y, §+y ?7+2: 5‘*‘2,2
2,%,Y 2, Y+z, T+z z+Yy, z, x+2 z+Y, y+2z,y
Yy 2 X Y T+Y, y+2 Z+2z,2, Ytz z+z, 1Y,
Ia3 z, 9,2 z+3i, z+2+3, 2+ y+z,y+4,T+y+1 Y+z+3, Ttz 2+4
2, %, Y Y+, y+z+4,zT+2 z+y, 2+, z+2+3 z+y+4, y+z,y+3
Yy 2, & z+4,Z+y+3yt+z Z+z,2+4,9+2+4 z+2+3, 249, z+ 3
Im3m coordinates of Im3 +
z,2,Y z, 2+Y, +2 Yy+z,2,T+2 Y+2z, 24y, y
z2,Y,x 2,T+2,y+2 4y, Y, y+2z z+Yy, 2+z, 2
Y T, 2 Y, Y+Z2,T+y z+2, z, x+Y Z+2z,Y+z22
Ia3d coordinates of Ia3 +
z+3 244, y++ 2,2+t 2tz y+z,2,%+2+13 y+i+3, Ty, Y
z+3,y+42+3 2, Z+z+4,§+2 Z4+Y, Y, Y+2+3 z+y+i,e+z, 2
Y+t z+i,2+13 Y, y+z+4,2+y z+Z, 2, c+y+1 T+z+3,Y+22

non-centrosymmetric space groups for which the con-
ventional unit cell is primitive (Hauptman & Karle,
1953, 1956). It was seen there that certain linear
combinations of the phases, called the structure
seminvariants, played a central role. The seminvariants
show which phases are uniquely determined by the
intensities alone and which are to be specified in
order to fix the origin.

In this paper we are concerned with those centro-
symmetric space groups for which the conventional
unit cell is non-primitive. The treatment here involves
the use of well-known transformations to replace the
conventional centered cell by an appropriate primitive
unit cell. The methods referred to above are then
immediately applicable. If desired, the final results
may be readily expressed in terms of the conventional
cell by means of appropriate transformations.

2. Primitive unit cells

The coordinates representing the space group relative
to a primitive unit cell are obtained from those cor-
responding to a non-primitive unit cell (International
Tables, 1952) by means of the following matrices:

1 1 O
C— P, < 1 -1 0), (2-1)
0 0 -1
0o 1 1
I-P, ( 1 0 1), (2-2)
1 1 O
and
-1 1 1
Fo P, ( 1 -1 1 ) (2-3)
1 1 -1

The results are shown in Table 1. For some of the
space groups the origin has been shifted to exhibit

the relationship between group and subgroup.

3. Equivalence

For the centrosymmetric space groups, the permissible
origins are the eight centers of symmetry in the
primitive unit cell. However, not all of these need be
equivalent, since different centers of symmetry may
be situated differently with respect to the symmetry
elements. The non-equivalent origins are associated
with different functional forms for the structure



H. HAUPTMAN AND J. KARLE

Table 2. Equivalence classes, seminvariant vectors and seminvariant moduls for the centered
centrosymmetric space groups, referred to a primitive unit cell
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Category 2 3 4
No. of equivalence classes 2 4 8
Type 2P 2P, 3P, 3P, 4P
C2[m Immm Fmmm I4|m Im3
C2/c Ibam Fddd I4,/a Ia3
Cmem Ibca Fm3 I4|/mmm Im3m
Space groups Cmca Imma Fd3 I4[mem Ia3d
Cmmm Fm3m I4,/amd
Ccem Fm3c I4,/acd
Cmma Fd3m
Ccca Fd3c
0,0,0 0,0,0 0,0,0 0,0,0 0,0,0 |
0,0,3% 340 | 34,3 | %, 4,0 %,0,0I
34,0 3,0,1 4,0,0 0,0 0,4,0 |
%9‘&9% 0;‘%:% 0:%:% O’é’o O’O’%I
Equivalence classes of origins p——
10,0 50,0 0,4,0 0,0,3 [B30]
‘&;0’% 0,%’0 %’O,Q é,i'% %’O’QI
0,4,0 0,0, 0,0,3 1,0,3 | 0,4,4 |
Ové,é 3,43 3,40 0,3, % I i,é,il
Seminvariant vector, hg,
referred to primitive cell (ht+Ek, 1) (h+k, k+1,1+h) (h+k+1) (h+k) (h, &, 1)
Seminvariant modulus, w; 2, 2) (2,2,2) (2) (2) (1,1, 1)
No. of phases linearly
semi-independent to be 2 1 1 0
specified arbitrarily

factors. This leads logically to the concept of equiv-
alence. Two origins are said to be equivalent if they
are geometrically related in the same way to all the
symmetry elements or, alternatively, if they lead to
the same functional form for the structure factor. In
this way the set of eight permissible origins is divided
into one or more equivalence classes; two origins in
the same class being equivalent, while no two origins
taken from different classes are equivalent. According
as the number of equivalence classes is one, two, four
or eight, the corresponding space group is said to be
in category one, two, three or four. The various
categories may be further subdivided as to type de-
pending upon the nature of the equivalencejclasses
(Table 2).

4.FSeminvariance

Once a functional form for the structure factor has
been chosen, i.e. a particular equivalence class has
been selected, then the values of certain linear com-
binations of the phases are determined by the crystal
structure, or, for centrosymmetric structures, by the

observed intensities (independently of the choice of
origin within the particular equivalence class). These
linear combinations of the phases are called the struc-
ture seminvariants (Hauptman & Karle, 1953, 1956).
The aims of this paper are attained with the identifica-
tion of the structure seminvariants for each space
group. To this end it is convenient to define the semin-
variant vector and seminvariant modulus associated
with the vector h = (A, k, 1), as indicated in rows 6
and 7 of Table 2; and to develop the concept of linear
dependence and independence.

5. Linear dependence and independence

5-1. Vectors

In order to develop the concepts of linear dependence
and independence we proceed as previously, (Haupt-
man & Karle, 1956), and consider vectors h =
(hyy Brgy o .., hp) and @ = (wy, wy, - .., wp), Where the
hi’s and wy’s are integers. In this paper the w¢’s are
restricted to the values 1 and 2. The vector h is said
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to be divisible by the vector w if each A; is devisible
by w;. In this case we write

h=0 (mod w).

Two vectors h, and h, are congruent modulo w if the
difference h;—h, is divisible by w; and the notation

h; = h, (mod w) (5-1-2)

(51-1)

is used.

Aset of m vectors hy,j = 1,2, ..., n, (n > 1), is said
to be linearly dependent modulo w if there exists a
set of n integers a;,5 =1,2, ..., n, at least one of
which is odd such that

n
2 ash; =0 (mod w) . (5-1-3)
=1
If each w; is equal to 2, this definition is included in
the one previously given (1956). If each w; is equal
to 1, this definition supplements the previous one
(1956) which is no longer applicable. We note that if
each w; is equal to unity, then every set of vectors
is linearly dependent modulo w. If the set h; is not
linearly dependent modulo c, it is said to be linearly
independent modulo .
The vector h is linearly dependent modulo cw on,

or linearly independent modulo w of, the set
h;,j=1,2,...,n(n = 1), according as there exist
or do not exist = integers a;,j = 1,2, ..., n, some or
all of which may be zero, such that
n
h =3 a;h; (mod w) . (5-1-4)
=1

If every w; is equal to unity, then any vector is
evidently linearly dependent modulo w on any set of
vectors. If every w; is equal to two, then any vector h,
each of whose components is even, is linearly de-
pendent modulo w on any set of vectors since each
a; in (5-1-4) may be chosen to be zero.

5-2. Phases

The seminvariant vector h; and the seminvariant
modulus w; associated with the vector h = (&, £, ),
or, alternatively, with the phase @y, have already
been defined (Table 2). We use these to define the
concept of linear semi-dependence and semi-inde-
pendence of phases.

For each of the types described in Table 2, a set of
phases @y, is said to be linearly semi-dependent or
semi-independent according as the set of semin-
variantly associated vectors is linearly dependent or
independent modulo ws, where w; is the seminvariant
modulus of the type.

The phase ¢p is linearly semi-dependent on, or
linearly semi-independent of, the set of phases Pn;
according as the vector seminvariantly associated with
@n is linearly dependent modulo w;s on, or linearly
independent modulo w; of, the set of vectors semin-
variantly associated with the set Pn;e

As already noted, for each fixed functional form of
a structure factor, the observed intensities determine
the values of all structure seminvariants. The identity
of the seminvariants is given by the following:

Theorem 1. For each type, the structure semin-
variants are the linear combinations

3 Anon, (52-1)
h
where the 4, are integers satisfying
Z‘4hhs =0 (mod (Os) N (5'22)

h

h; is the vector seminvariantly associated with the
phase gy, ws is the seminvariant modulus of the type,

and the symbol 2 in (5-2-1) means that the sum in

(5-2-1) is to be reduced modulo 27 and -7 < 3 < 7.
h
The proof of this theorem, based upon an analysis

of the equivalence classes shown in Table 2, follows
the same lines as that given in Monograph I (1953).

6. Specification of origin

In the determination of phase by some direct proce-
dure, it is presumed, of course, that a sufficiently
large number of intensities have been observed to
determine the structure uniquely. It is also necessary
to choose one of the possible functional forms of the
structure factor, e.g. by means of the coordinates listed
in Table 1. This corresponds to selecting one of the
possible equivalence classes listed in Table 2. Only
when this is done will the values of the seminvariants
be uniquely determined by the observed intensities.
It is therefore to be expected that fixing the functional
form of the structure factor is an integral part of any
direct procedure for determining the values of phases
from measured intensities.

6:1. Type 2P

The phases which are the structure seminvariants,
hence uniquely determined by the magnitudes of the
structure factors alone, independent of the choice of
origin, are of the form gy, and @uu, (¢ means even and
% means odd). The value of any phase, @, not of this
form, may be specified arbitrarily, i.e. either 0 or 7.
Once this is done, the values of all phases, linearly
semi-dependent on ¢, are uniquely determined. The
value of any phase, @,, linearly semi-independent of
@; may be specified arbitrarily. In this way the origin
is fixed and the value of any remaining phase ¢ is
determined. This is a consequence of Theorem 1,
since @ is linearly semi-dependent on the pair ¢, and ¢,,
whence there exist integers 4, and 4, such that

p+A4,0,+ 4,9, (6-1-1)

is a structure seminvariant and therefore determined
by the intensities.
As an illustration of the specification of origin,
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@, may be chosen to be a @ug. Then the values of all
phases @ugy and @gug, being linearly semi-dependent
on ¢, are determined. Next, @, may be chosen to be
a @yuy. Then the values of all phases @uuy and @ggu,
linearly semi-dependent on ¢,, are determined. Finally
the values of all phases @ug and @guy, linearly semi-
dependent on the pair ¢, @,, are determined.

6:2. Type 2P,

The first paragraph of 6-1 carries over verbatim for
Type 2P, with the single exception that the semin-
variant phases are now of the form @z and @uuu.

As an illustration of the specification of origin,
@, may be chosen to be a @uuy. The values of all phases
Quug and @y, linearly semi-dependent on ¢,, are
determined. Next, ¢, may be chosen to be a @uu.
Then the values of all phases @guy and @ug, linearly
semi-dependent on g@,, are determined. Finally the
values of all phases @ugsu and @gug, linearly semi-
dependent on the pair ¢,, @,, are determined.

6-3. T'ype 3P,

The phases which are the structure seminvariants
are of the form gy, Quug, Pugu and @gua. The value of
any phase ¢,, not of this form, may be specified
arbitrarily. Once this is done, the values of all phases,
of necessity linearly semi-dependent on ¢,, are deter-
mined. For example, ¢, may be chosen to be ggu.

6-4. Type 3P,

The phases which are the structure seminvariants
are of the form @ggq, @gou, Puug, and @uyu. The value
of any phase ¢,, not of this form, may be specified
arbitrarily. Once this is done, the values of all phases,
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of necessity linearly semi-dependent on ¢,, are deter-
mined. For example, ¢, may be chosen to be @ug.

6-5. Type 4P

Every phase is a structure seminvariant and its
value is determined by the observed intensities. The
value of no phase may be specified arbitrarily. In this
type, the choice of the functional form of the structure
factor is equivalent to the unique selection of the
origin.

7. Concluding remarks

Monograph I (1953) and this paper present a detailed
procedure for specifying the origin in any centro-
symmetric space group. This has been done by
demonstrating the existence of relationships between
the observed intensities and values of the phases via
the structure seminvariants. With the specific state-
ment of the nature of these relationships, it is possible
to go directly from observed intensities to the values
of phases. It will be the aim of future publications to
employ the formulas of our two recent papers (1958)
to obtain specific procedures for phase determination
for all the space groups.
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Structure Factor Calculations for some Helical Polypeptide Models

By Davip R. DaviEs AND ALEXANDER RicH
Section on Physical Chemistry, National Institute of Mental Health, Bethesda, Maryland, U.S.A.

(Received 16 September 1957)

Structure factors have been calculated for some helical polypeptide models, assuming random
angular orientations of the molecules about the helical axis. The computations were carried out
on IBM punched-card machines and a brief description is given of the method of computation.

Introduction

The theory of X-ray diffraction by helical molecules
has been developed by Cochran, Crick & Vand (1952),
who applied it to verify the presence of the «-helix
(Pauling, Corey & Branson, 1951) in the synthetic
polypeptide, poly-y-methyl-L- glutamate. Since then,
helical structures have been proposed for a number of

ACi2

molecules, e.g. desoxyribose nucleic acid (Watson &
Crick, 1953); collagen (Rich & Crick, 1955). Although
many helical structures have been proposed with no
more than a qualitative prediction of the calculated
intensities, it is important to point out that a structure
with satisfactory screw dimensions will not neces-
sarily result in a correct distribution of layer-line
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